Razón de dos cantidades homogéneas

Quizás lo mejor, antes de avanzar en una explicación sobre la Razón de dos cantidades homogéneas, sea revisar algunas definiciones, que de seguro permitirán entender esta relación matemática en su justo contexto.

Definiciones fundamentales

En este sentido, puede que sea recomendable también delimitar esta explicación a tres definiciones específicas: Magnitud, Cantidad de magnitud y Medida de una magnitud, por encontrarse directamente relacionadas con la Razón existente entre dos cantidades de magnitud que puedan resultar homogéneas. A continuación, cada una de estas definiciones:

Magnitudes

De esta manera, se comenzará por decir que las Matemáticas han señalado que la Magnitudes puede ser consideradas como un conjunto de elementos, en los que estos cuentan con la propiedad o cualidad, de someterse a ciertas operaciones como la suma, la comparación y la ordenación. En este mismo orden de ideas, las Matemáticas han señalado que la Longitud, la Capacidad y la Masa –atributos propios respectivamente de algunos segmentos, recipientes o cuerpos- pueden ser consideradas como magnitudes.

Cantidades de una magnitud

Por otro lado, también será importante detenerse un momento en el concepto de Cantidades de magnitud, la cual ha sido descrita por las distintas fuentes como cada uno de los elementos que se encuentran incluidos dentro de las Magnitudes, es decir, aquellos elementos que cuentan con el atributo de sumarse, compararse u ordenarse, y que son identificados también como atributos propios de los segmentos, curvas, recipiente o cuerpos, según refieran entonces a longitudes, recipientes o cuerpos.

Ejemplos de como calcular la longitud de un circunferencia Quizás lo más recomendable, antes de exponer algunos ejemplos sobre la forma adecuada en que debe de...
Diagrama de Venn Tal vez resulte conveniente, previo a abordar la definición y demás aspectos del Diagrama de Venn, r...
Diagrama de Venn para la Disyunción Quizás lo mejor, previo a abordar la definición y demás características de los Diagramas de Venn par...

Medida de una cantidad de magnitud

Finalmente, resultará igualmente pertinente explicar la Medida de una cantidad de magnitud, la cual ha sido descrita por las distintas fuentes como un procedimiento matemático dirigido a descubrir cuánto mide alguno de los elementos de una magnitud. Así mismo, las Matemáticas señalan que este procedimiento se lleva a cabo siempre comparando la medida que se quiera determinar con otra de la misma naturaleza, es decir, que le resulta homogénea, y que recibe el nombre de Unidad, siendo representada entonces por la letra “u” minúscula.

Por otro lado, las fuentes matemáticas han señalado también que pueden presentarse dos casos cuando se trata de determinar cuál es la Medida de una cantidad de magnitud:

  • que la Cantidad de magnitud resulte ser un múltiplo de la unidad, en cuyo caso entonces la medida se determinará con la siguiente relación: a = x.u, donde a será la medida a determinar, x el número de veces en que la unidad se encuentra incluida en la unidad, y u la propia unidad.
  • por otro lado, también puede ocurrir que la cantidad de la magnitud es un divisor de la unidad, situación que requiere entonces, en pro de determinar la medida de esta cantidad de magnitud aplicar la siguiente relación: a= 1,5 . u

Razón de dos cantidades homogéneas

Una vez se han explicado cada una de estas definiciones, puede que ciertamente sea mucho más sencillo abordar una explicación sobre lo que la Matemática define como Razón de dos cantidades homogéneas, las cuales han sido explicadas como la relación que existe ente dos cantidades de magnitud, que responden a la misma naturaleza, y cuando la medida de una se toma en base a la otra, puesto que esta última se ha asumido como unidad. Sin embargo, la razón de estas dos cantidades homogéneas siempre resultará independiente de la unidad que ha sido elegida.

Por ejemplo, si se tuviera un segmento AB igual a 8, y un segmento CD igual a 4, y se asume que el segmento CD es dos veces sobre el segmento AB, entonces se podría decir que al medir estos segmentos se tendría lo siguiente:

AB = 4 . u

CD = 2 . u

Imagen: pixabay.com

Razón de dos cantidades homogéneas
octubre 30, 2018